Abstract, E-MRS Spring Meeting 2012

Interface chemistry of Al$_2$O$_3$/III-V upon atomic layer deposition

M. Tallarida1, C. Adelmann2, D. Cuypers2, L.N.J. Rodriguez2, D. Lin2, M. Michling1, D. Friedrich1, A. De Clercq2, A. Delabie2, S. Van Elshocht2, J.P. Locquet2, M. Caymax2, D. Schmeisser1

1 Brandenburg University of Technology, 03046 Cottbus, Germany
2 Imec, B-3001 Leuven, Belgium

The atomic layer deposition of Al$_2$O$_3$ films on III-V semiconductors induces the reduction of native oxides on III-V surfaces [1]. Although this behaviour has been widely investigated [2,3], details of the mechanisms leading to the interface formation and their chemical/physical properties (roughness, chemical composition, and defect density) is still matter of investigations [4,5]. In this contribution we present a detailed study of the growth of Al$_2$O$_3$ by tri-methyl-Al (TMA) on various III-V substrates (InP, GaAs, InAlAs) by means of in-situ synchrotron radiation-photoelectron spectroscopy (SR-PES), measured at BESSY-II, Berlin. Due to the high resolution of SR-PES, we can determine the chemical composition of III-V surfaces before treatment (native oxide covered), after the ex-situ pre-treatment, i.e. cleaning with either (NH$_4$)$_2$S, H$_2$(SO$_4$) or NH$_4$OH, and after each TMA half cycle. The final Al$_2$O$_3$/III-V chemistry shows differences depending on III-V semiconductor and on surface pre-treatment. Electrical characterization and in-situ valence band measurements showed only small unpinning effects due to the reduction of native oxide.

References