We report a scanning technique, which combines high resolution x-ray diffraction (in reciprocal space) along with a sub-μm spatial resolution (in real space). SiGe/Si(001) Stranski-Krastanow islands served here as a well investigated model system to check out the limits of the developed method. A set of refractive silicon x-ray lenses focused the x-ray beam size down to a diameter of 200 nm (FWHM), which enables scanning of individual μm-sized and even smaller islands. By illuminating diverse {111} island side facets, crystal truncation rods of different orientation were excited and thus contribute to the scattering pattern frame (12-14). We will vary the chemical composition of the Pr₂₋ₓYₓO₃ (x = 0-2) buffer to study the influence of lattice mismatch on electronic and structure properties of the S-I-S heterostructure.