Appendix A

Exercises

A.1 Sheetl

Problem 1: Vector field

A, Consider the vector field v — ¢ + 2 | I}'Ht'l_q.- Determine

a) (vV-V)¥

by divvand curd v
in carlesian coordinates at the position £ — P2, —1.0). (2 points)
B. Show that

a) curligrad ') — 0, for every scalar ficld I

by arad(@y) — parady | yarad @, For every scalar ficlds g,y

cl :Iivliq:l.-‘ll] l:|.‘.u;.1j1r'.-"lI wy arad @, for every scalar ficld @ and vector beld A.

(3 points)
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182 FExerciscs
Problem 2: Eigenvalues and eigenvectors

The strain tensor g is related 1o the displacement ficld 5 by

RETEI S
Fij 2 El.tj dr; |

For a two-dimensional parallel shearing the vector Vis given by

o ()
g (=),

Find the principal axes. (2 points)

Problem 3: Stress tensor

AL The state of stress at a point is given by the stress tensor

1 a b
Gij—an| a 1 ¢
oo |

where a, b, ¢ arc constants and Gp 15 some stress value, Determine the constants a, b and ¢ so

1 1 1 .
that the stress tensor on the plane 7;&‘] [ 7;&"3 [ —r-%aa vanishes.
Tl W i

(1 point)

B. Let the stress components (in M Pa) at point P owith respect to the system 8 be expressed by

the matrx
2 -2 [

o -2 w2 0D
0 0 —2

and let the primed system 5 obtained by a 45 counterclockwise rotation about the x3 axis.
Dictermine the stress components ﬁFj. (2 points)
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A.2 Sheet 2

Problem 1: Hydrostatics

Figure below shows a manometer, which is a U-shaped tube containing mercury of density p,.
Manometers arc used as pressure measuring devices. If the Huid in the tank A has a pressure p
and density p. then show that the gauge pressure in the tank is

P Paim = Pmih — pga.

Mote that the last term on the right-hand is negligible if p <<= pg.

(Hint: Equate the pressune at X and Y in the above Hgure.) (1 point)

Problem 2: Hydrostatics or Euler equation

AL What is the value of a; at which the water just begins to run out over the rear wall of the

container shown in figure below? (3 points)
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B. A cylinder filled with two immiscible liquids of density p1 and pa = p) rotates with angular
velocity @ about its axis. Find the pressure distribution, the shape of the interface between the
ligquids, and the shape of the free surface.

(Hint: In a rotating Frame of reference one has to consider two supplementary forces on the right
side of Euler equation. One is the Coriolis force —2ih ¢ + and the second one is the centrifugal
force | 7, where F is the vector of position drown perpendicularly to the axis of rotation. ) (4
points)

Surface

‘Interface

Problem 3: Continuity equation

et a one-dimensional velocity field be vy — vy (20, with v, — Oand v, — 0. The density varies

as p— pol2 —coson ). Find an expression for vy (o, 0] if v ( 0,0) — Voo (2 points)
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A.3 Sheet3

Problem 1: Bernoulli equation

Figure below shows a simple device to measure the local velocity in a fluid stream by inserting a
narrew bent tube, This device is called a Pitot tube, after the French mathematician Henry Pitot
(1635-1771), who used a bent glass tube to measure the velocity of the fver Seine. Considering
two points 1 and 2 at the same level (point | away from the tube and point 2 immediately in the
front of the open end where the Huid velocity is #ero) and using Bernoulli equation, compute the
fluid velocity. There are known the heights fr1, fr2, the Aluid density p and the gravity constant
g. Priction is negligible along the streamlines. Depends the “measured velocity™ on the fuid
density? (2 points)

JFitot tube
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Problem 2: Barometric formula

AL Expressions for the pressure distribution and “thickness" of the atmosphere can be obtained by
assuming that they are isothermal. This is a good assumption in a lower 70km of the atmosphere,
where the absolute temperature remains within 13% of 250K, Using the formula which describes
the pressure in a static fuid

d

:!';'_

—pg (A1)
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and the equation of the state For an ideal gas

RT
p— P (A2)
[T
show that
p— poe A (A7)

where py is the pressure at 2 — 0, g is the molar mass, g is gravity and £ is the universal gas
constant. (2 points)

B. The guantity BT /ug, called the scale height, is a good measure of the thickness of the at-
mosphere.  Evalvate the scale height for an average atmospheric temperature of 77— 2508
(g 29%p kmol, g — 98N kg, B — 831 10% fkmol - K). Compute the total mass of the at-
mosphere. (The radius of the Earth is Ry — 6400 &m and the atmospheric pressune at £ — 0 and
T = 250K is pp 107 N_.-"n.':."J (2 points)

. Assume now that the temperature of the atmosphere varies with the height z as
TV =T+ Kz.

Show that the pressure varies with the height as

y g KR
Ad
F “”[m P Kz Ao
(X points)
[3. For a real gas of van der Waals type the cquation of the state becomes:
, B -
plp] P Ap© (ALS)

| —bp

where B, B, A are two coclflicients taken as empirical parameters. Assuming an isothermal atmo-

I (aﬁ) d
il [# e
) ap -;-P

and thercfore from (1) one obtains immediately:

fF'I:Z' | (E‘Iﬁ') y (AS)
— — —HE .
pioy poldp Sy P

sphere one can write:
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[ntegrating the relation (6) show that:
z —1 Al Inp—1 I:I—nr ]I; —24 O (AT
- np—In p)+ T o) 2 p A

with  the integration constant. (2 poinis)

E. Flot the coordinate z from relation (7)) versus the density p for A=B=C=10, g=10 and b=(1.5, in
the range p — 000001 and p — 199 Indicate on this figure the position of the interface between
the liguid and the gas phascs. (1 point)
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A.d Sheetd

Problem 1: Velocity profile of inclined fluid layer

A layer of luid with thickness d is bounded above by a free and non-defonmable surface and be-
low by a fixed plane inclined at an angle o to the horizontal. Gravity (with acceleration constant
gl induces a stream in x-dircction. We scarch the stationary velocity profile and the pressurc
distribution in the fluid layer.

Ulse the 21 cartesian coordinate system from fgune below,

T

guefe™

fred

velocity profile v (z)

Ty, substrate

The incompressible Navier-Stokes cquation is given by

v |
av ——Vp vy I (AB)
dt p

with the velocity v — (v, v, ), kinematic viscosity v and _,|'r1h|_' body force density.

a) Show that Eq. (A.R) can be reduced on components to

A=
il v il.f | gsinie (A
[F
/
0 "!i A p—— (A.10)
[

(X points)
b1 At the free non-deformable surface (2 — o ) we must have o, T[%'__‘- ) and for the pressure,
we have p — po, po being the atmospheric pressure. For £ — 0 we have: vy [z — 0) — (0. Using
these boundary conditions integrate Egs. (2) and (3) and show that:

plz) po+peld —zjcosa (A1)

E SN
(2 <

(2d —z) (A.12)
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(2 points)

o) Plot the relations (4) and (5) versus 2 in the range 0 and & (1 point)

Problem 2: Couette flow between rotating cylinders

Useful formulas: Cylindrical polar coordinates are denoted by (i, z), with (v, vy, v ) the corme-
sponding velocity components. In the cylindrical coordinates the continuity cquation and Navier-
Stokes cquation (written here without body forces) become, respectively:

dp 1A, o1a, oA
A P gt g e =0
vy . ) 'T; [ E'Ir: _ ve 2 avg
ar TV Ty, ""(5"" 2 aq:)
g Ve 1 dp Ve 2 dhy
_¥ LY N N, A L
a TVt = praq:"'(‘f“* ae'ﬂaq:)
Mo e — — L9 v
el oz
where 3 3 3
) .= lI-l'-"_ L=
I wh T
1 a &

a) Determine the distribution of velocity ina viscous, incompressible Auid, existent between two
infinite, coaxial cylinders, of radii &) and &> = &), which perform a uniform motion of rotation
about their common axis, with angular velocities ), and oo, respectively. (1 point)

by Particulanze the result from the point a) for @) — o

0 and for the case when the extenor
cylinder is taken away (K2 — co, 02— 0). (1 point)

o) Determine the pressure distribution knowing the tluid density p and the fluid pressure at the
cylinder of radius &, g, (1 point)

Hint 1: Chocee o eylindnc system of coordinates, with 7 axis along the evlinders axis. By symmetry
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criteria we have: v = v, = 0p wy = wir]: p = p(r). Pmoject the Navier-Siokes equation on r and ¢
clirections.

Hint 2: Equations of the type:
d*v ar v
ar  rdr 7

has solutions of the form 7 substitution gives n — 41, 5o that v(r] = Ar+ B/r.

A

Problem 3: Streamlines, incompressibility and vorticity

A two-dimensional sleady Oow has the velocity components: v, = v, v, = 1. Show that the streamlines
are rectangular hyperbolas:  — y* — const, Indicate if this fow is compressible or incompressible? Do it
has vorticity? (2 poinls)
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A.5 Sheet 5

Problem 1: Sound waves in moving air

Find the dispersion equation for g plang sound wave in moving air, starting from the following system

cgpualioms:
i, dvy dp
Pla e ) "a

ap Apr)
Elrl e ]
pp T = popy”

with y—the adighatic index. The air is moving gt speed Oy in the positive x axis, Assome the wave
propagation in x direclion. (3 poinis)

Problem 2: Sound waves in the presence of heat conduction

Find the dispersion relation For plang sound waves in air, accounting for heat comduction. The governing
cquations are motion, continuity, stake, and eneroy:

v, i, dp
Pl ) e

ap  Apw)
el i

pRT

iy

ar ar i dp  d'T
|'."-:-I_J (E } 1'_,5) E | 1'_,3 | Hal‘:

with cp—the specific heat capacity at constant pressure, K—the thermal conductivity and mo—the molar

mass.  The undisturbed state of the system is described by the parameters: v, = 0, p = g = const,

p=po=rcons., I =Tg = consl.. We assume now small Auid pedurbations depending on x and ¢, of

S0 pene, propagating along v axis. Show that:

. 2
(o) g 0)
Pocy Po TPa

with ¥—the adiabatic index, ¥ -‘:- —m o, —the specific heat capacity at constant volume. (4 poinds)
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Problem 3: Shallow water waves in a channel with linearly modulated ground

The lineanized shallow water egquation can be writlen:
dohix, ) — G (Hix)d hixe)) =0 (Ao 13)

with A x] the real depth of the fab waler (see lectore).

Cime comsiders achannel of length &2 with linearly increasing depth
Hix) = x/L 0=x= [,

Al x = Lthe channel i= in contact with the water from a lake. The water surface oscillates periodically in
time with the frequency £ Cne assumes the amplitudes of the sater waves small enough, so that one can
vse Fa. (13 Derive the nonsingular soluticon for the water waves in the channel:

flxf] =14 .:T...n’(.['-r"ﬂ] cios [£3r . ey

with & = 402°L /G and ag— a small amplitude |a,] << 1. (3 points)

cod

lake

Hintl: In order to satisfy the boundary condition at x = £ vse for Eg. 1 oan ansatz of the Fom:
B, t) = 1+ alx)cos| Q0.

Hint2: hMake the substitotion: x T‘;wfif.

Hint3: A nomsingular solution for the equations of the type

d*a . Lda
dS? - Ll

iz 0 Bessel function of the first kind Jo(£).
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A.6 Sheet6

Problem 1: Ekman layer

The winds that blow over the Earth’s ocean give rise o surfoce curments, especially when they blow sieadily
in a fxed direction. In this case the ocean may approach a steady stale of motion, such that, in o frame of
reference which rotates with the Earth, we can have a balance between the Coriolis and the viscous Torees
in afrctional layer near the Pree surface of the ocean (called Ekman layer afer the nome of the Swedish
oeeanographer Ekman which worked oul on this problem in 19050 We consider the fnctional layer near
the Free surface of the ocean, which is acled by a wind stress T in the x direction. We examine the steady
solution and we asswme that the honizontal pressure gradients are #emo (the pressure does nol depends on
xanid ¥ and the laminar ey in horizontal direction depends only on 2.

(a) Starting from the Mavier-Stokes equation for rolating frames of elerence showar that the horizontal
cguations ol molion o

dv,

—fy, = VS (A-15)
d*w,

v, v . (A 16)

with = 2 £ sind and A— the angle of the latitude measured from the equator in nomherly direction (ie.
R = m/2 at the north pole, and & — —n /2 at the south pole). (1 point )

(b Taking the z axis vertically upsacards From the suface of the ocean, the boundary conditions are p\"‘_'l,—":l

T, ..'_ Datz = 0and v, v, — 0as 7 — —oo. Show that the velocity components become
T/p ) I =
- v explz/d) cos IZ—S 1:'
TP e B sin =
l‘T \r-ﬁ Lﬂp[‘:l .‘:Iﬁln ['\. E I I'I'.-]
with & .'r,-"%—lh-:: thickness of the Ekman layer. (2 painis)

(o) Plot the velocities at various depths and the vertical distributions of v, and v, versus 2 for the northern
hemisphere, How will change these representations in the southern hemisphere? (2 poinis)

Problem 2: Foucault pendulum

A Fovcault pendulum (named after the French physicist Léon Foucault) was conceived in 1851 as an
experiment 0o demonstrate the rotatiom ol the Earth withoot any other astronomical observations. This is
a spherical pendulum subject to both gravitational and Conolis forees.
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ia) Show that the motiom of the pendulum in the (x, ¥) horizontal plane is described by the coupled equa-
ticns (Tor =small amplitodes:

::—jf by - % AT
% bty f % (A-1%)
with w? g/ (I—the length of the pendulum) and = 2 £ sink, = in the Problem 1. (2 points)
(b Show that ]
Z—:T b (267 f’}% bt 0 (A.19)

Us=ing for the shove equation an ansate of the form: x -0 sinf ), show that in the limil § < @ one
obiains: £3) 5 Ln:l:-.r,-. (1 point)

() The most general solution of equation (5) is:
x(1) = Asin[ £+ du )+ Bsin(£2ar + d2).

Show that:

1
¥t o [—AL cos (£ + )+ BEocos[L2. + o). (M4.200)
(1 point)

() Considering that at the initial moment the pendulum cecillates in the vertical plane, so that ALY, = BL25,
find from the relatiom (6) the period of mevolation of the Foucault pendulum.  Depends this period on
latitwde? Om the length of the penduluom? (1 poind)

Problem 3: Influence of rotation on atmospheric waves

Conzider the atmesphenc perturbations deseribed by the system equations:

p(;—" I ['.’-"?"]L’) —?p—!pﬂxh’

p
ol
pp T = papy

FW-[py) =0

N
where £2 is the Earth’s angular velocity assumed to be comstant. One considers £2 0l and Vi, 1)
£,
vt
velao ] | W suppose the undisturbed state deseribed by the parameters: v, =0, v =0, p = po
0
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const., p— pp = consl Assuming now =mall fluid perturbations depending on x and ¢ of gl —u] Ly

propagating along o oaxis, show cthat the system dispersion eguation takes che fomm:

pe,

4 4 o 4
W = k7og
. !y . . . . . . .
with ey Rl.f—'lpf;'—lh-: sonic speed. Are the atmospheric waves dispersive or pon-dispersive in the presence

of motation effect=? (5 poinls)
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A.7 Sheet7

Problem 1: One-soliton-solution

The Koreweg-de Vries equation can be writlen

hph-dhtd h=0 A2

LT

(see leciure). Derive the “One-soliton-solution™

v
hE) = —5——— (4.22)
) cosh™[VE/2)

from Eq. 1. Todo so, search for a solution traveling with velocity v, e use the transformation
hx.t) = h{x—11) = hE)

and integrate Fg. 1 two times, Sketch the solution (29 for v = 5010 and 15, respectively, in the range
£ = —10and £ = 10 Depends the solitom amplitude on the propagation velocity 7 How? (3 poinls)

Problem 2: Sine-Gordon equation

The Korewep-ce Yries equation is not the only eguation which admils soliton solutions. Another example
i= the Sing-Gordon aquation which in one-dimensional form reaids:

[ %82, — a i) = sindix,f). (A23)

(a) For Sine-Grordom equation written abowe we look Tor solutioms traveling with constanl velocity v, i,
wie u=e again the transformation

i) = pla—wr) = ().

[nlegrating once Eq. 3, show that:
Ll 2 2 - )
—(e" =17 (=" = E —cosd A2

where E is an inlegration constant. (2 poinis)

i) For solitary wave the solution f and dih/ 92 have 1o approach 0 as £ — 400, Find under these conditions



